METHOD OF TEST FOR DETERMINATION OF V.M.A. IN COMPACTED BITUMINOUS MIXTURES

Test Method LS-266, Rev. No. 16

Date: 96 05 01 Page 1 of 6

1. SCOPE

1.1 This method covers the calculations required to determine the Voids in Mineral Aggregate (V.M.A.) of a compacted bituminous mixture.

2. RELEVANT DOCUMENTS

2.1 MTO Methods LS-262, LS-604, LS-605

3. **DEFINITIONS**

3.1 V.M.A. in a thoroughly compacted paving mixture consists of the volume of intergranular void space between the aggregate particles that includes the air voids and the effective asphalt content expressed as a percentage by volume of the total volume of the sample.

4. CALCULATIONS

4.1 V.M.A. (Figure 1)

$$\begin{array}{lll} \text{V.M.A.} & = & \frac{G_b - G_c}{G_b} \times 100 \\ & = & 100 - \frac{D_b(100 - \% \text{ A.C.})}{G_b} \\ \text{where } G_b & = & \frac{100}{\frac{\% \text{ Co. Agg.}}{\text{BRD Co. Agg.}}} + \frac{\% \text{ Fi. Agg. #1}}{\text{BRD Fi. Agg. #1}} + \frac{\% \text{ Fi. Agg. #2}}{\text{BRD Fi. Agg. #2}} + \dots \\ \text{and } G_c & = & \frac{Db \times (100 - \% \text{ A.C.})}{100} \\ G_b & = & \text{bulk relative density of aggregate} \\ G & = & \text{compacted relative density of aggregate} \\ D_b & = & \text{bulk relative density of compacthe plant check gradation and A/} \\ \text{BRD} & = & \text{bulk relative density (LS-604 \& LS-605)} \\ \end{array}$$

5. REPORTING OF RESULTS

5.1 Report V.M.A. in % to nearest 0.1% on the Bituminous Mix Form, (see Figure 2).

6. NOTES

6.1 If the plant check gradation and AC content is very close to the mix design, then the G_C calculation from the mix design may be used.

Test Method LS-266, Rev. No. 16

Page 2 of 6

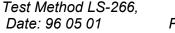
Date: 96 05 01

6.2 If the plant check gradation varies by 5.0% or more from the design, then the BRD's for the coarse and fine aggregates must be used to calculate the V.M.A. Both the G_C calculation and the BRD's for the coarse and fine aggregate(s) should be noted in the remarks column of the Bituminous Mix Design Report (Figures 3,4; Respectively, front and back sides of report.).

		7
12	~	7 }
	$\underline{\mathbf{v}}$	ノ
Or	nta	rio

% VOIDS IN MINERAL AGGREGATE

Test Method LS-266, Rev. No. 16


Date: 96 05 01

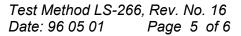
Page 3 of 6

DATE	CONTRACT No_			
	N	MATERIALS	6	
MATERIAL	S I	_AB No.	B.R.D.	WATER ABSORP.
RECLAIM ASPHALT PAV'T	. (R.A.P.)			
COARSE AGGREGATE				
COARSE AGGREGATE PA	ASS #4.75mm			
FINE AGGREGATE # 1				
FINE AGGREGATE # 2				
MINERAL FILLER				
	MIY	ES SELECT	ren	
	1	2	3	4
% R.A.P.	'			
% CO. AGG.				
% FINE AGG. # 1				
% FINE AGG. # 2				
% M.F.				
1				
% A.C. 2				
3				
	CA	LCULATIO	NS	
1 DIII K DEI ATIVE I	DENSITY OF COMPACTE			
1. BOLK KELATIVE L	2		3	4
· · · · · · · · · · · · · · · · · · ·			J	_
1			Į.	
BULK RELATIVE I	DENSITY OF AGGREGAT	E (G _b)		
		100		
0/.0	100		0/17: 4	GG 112
<u> %Ca</u>	0. AGG. + %F1.	AGG.#1	$+\frac{\%Fl.\ A}{}$	GG.#2 +
B.R.D.	$\frac{O.\ AGG.}{Co.\ AGG.} + \frac{\%Fi.}{B.R.D.\ F}$	Fi.AGG. #1	B.R.D. Fi	
1	2		3	4
3. VOIDS IN COMPA	CTED AGGREGATE (V.M	.A) %		
0/17 14	$A = 100 - \frac{D_b (100 - \%)}{G_b}$	A.C.)		
%oV .M	$A = 100 - \frac{1}{C}$			
	U_h			

PH-CC-372 (Formerly OBMT153)

Figure 1

Rev. No. 16 Page 4 of 6



BITUMINOUS MIX FORM

MARSHALL TEST VALUES PROPERTY SAMPLE NUMBER **AVERAGE PROPERTY** SAMPLE NUMBER AVERAGE MASS OF COMPACTED SPECIMEN IN AIR STABILITY (DIAL) SURFACE DRY MASS OF SPECIMEN IN AIR AFTER FLOW No 1 (s) IMMERSION IN WATER MASS OF COMPACTED SPECIMEN IN WATER FLOW No 2 (s) AVERAGE FLOW (s) B_2 VOLUME = A_2 - B_1 С *** BULK RELATIVE DENSITY = A₁/B₂ **VISUAL OBSERVATIONS SUMMARY OF TEST** MASS OF FLASK AND MIXTURE IN AIR **RESULTS** MASS OF FLASK IN AIR MIX APPEARANCE D,M,R,VR VOID (%) Ε *S.D BRIQUETTE D.M.R.SF.F MASS OF MIXTURE IN AIR = D - E FLOW (.25mm) **APPEARANCE** F AGG C.AGG. CORRECTED SURFACE DRY MASS OF MIXTURE IN AIR **COATING** P,F,G STABILITY (N) **STRIPPING** ** V.M.A. (%) G MASS OF FLASK AND MIXTURE IN WATER NIL,SL,M,H MIX TYPE MASS OF FLASK IN WATER C.AGG.FRACTURE NIL,SL,M,H %A.C WETNESS OBSERVED IN Υ MASS OF MIXTURE IN WATER = G - H Ν %PASS 4.75mm FRACTURED C.A. **** S.D \sqcup I_2 CONTRACT No_____ Blend VOLUME = F - I₁ AGGREGATE DATE _____ * S.D. VOLUME = F₁ - I₁ I_3 SAMPLE NO. SAMPLE No.____ * MAXIMUM RELATIVE DENSITY = F / I2 C/A Remarks: *** S.D. MAXIMUM RELATIVE DENSITY = F / I₃ SAND PERCENT VOIDS IN MIXTURE = $\overline{J} - C \times 100$ * S.D. MEANS SURFACE DRY SA/SCR ** V.M.A CALCULATED ON % VOID IN MINERAL AGGREGATE FORM *SD. PERCENT VOIDS IN MIXTURE = $\frac{J_{_1} - C}{J_{_1}} \times 100$ *** ALL RELATIVE DENSITIES ARE CORRECTED TO 25°C K_1 RAP ****INDICATE BY CIRCLING Y FOR YES OR N FOR NO

PN-CC-351 93-02

FIGURE 2

BITUMINOUS MIX DESIGN REPORT

CONTR No.	RACT					T MIX PE / U							ITI	EM		
HWY.					LO	CATIO	ON									
TESTIN LAB.	IG					JOB MIX FORMULA No Issued by Qual. Assurance										
LAB MI No.	IX							DATE SAMPLES REC'D.								
								DATE COMPLETED								
TEST D	ATA C	ER	TIFII	ED BY:_												
					ORMU								*	_		
%AC	26.5	1	9.0	16.0	13.2	9.5		1.75	2.36	1.18	6	00	300	150	,	75
MARSH	HALL (min.)		REQ	UIREM	ENTS	SEL	ЕСТЕ	ED		A #1			% R	AP AC RAP		
FLOW	(max.								% F	A #1			RAI	P PEN		
FLOW (n	nin.)							% FA #2 % FA #3					BRIQ. BRD MRD			
% VMA	(min.)								Gb				MR	D (SD)		
CI			ALT	CEME		ON	4	CI	DDI IED			ITIV	E	A C 0/	OF A	C
SC	JPPLIEF	Κ		PEN	ETRATI	ON	1	SU	PPLIER		1	YPE		AS %	OF A	.C
AG	GREG. TYPE	EGATE SOURCE / INVENTORY No.				lo.	AGGREGATE TYPE					SOURCE / INVENTORY No.				
	COARS AGG #	SE					FINE AGG #2									
	COARS AGG #2							FINE AGG #3								
	FINE	INE				RAP										
AGGRE	AGG #	ı JLK	·		1	Λ.	CCDI	EGAT.	E GRA	DATIO)NI DI	EDCE	JT DA	CCINC		
-GATE TYPE	RELA DEN	ATI	VE	ABSORP -TION	26.5	19.0	16.0	13.2		4.75	2.36	1.18	600	300	150	75
RAP CA																
RAP FA *FINES R	ETUDNI	ED.	ro Tui	E MIV (%)											
REMARK		U		L IVIIA (/0)											
PH-CC-35	53 8804	ī	EVIEV	WED BY:				(MTC) DA	TE·						

Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density % VMA A.C.%	% Voids.	Marshall Stability (N) X 1000
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density % VMA		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Bulk Relative Density Marshall Flow (0.25mm) Maximum Relative Density A.C.%		
Maximum Relative Density AC.% AC.%		
Maximum Relative Density % VMA AC.%	Bulk Relative Density	Marshall Flow (0.25mm)
A.C.%		
A.C.%		
A.C.%		
A.C. %		
A.C.%		
A.C. %		
A.C.%		
A.C. %		
A.C.%		
A.C. %	Maximum Relative Density	% VMA
		-
UAL ODSERVATIONS	A.C. %	A.C. %

Figure 4